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STUDY OF GENERALIZED LEGENDRE-APPELL POLYNOMIALS VIA

FRACTIONAL OPERATORS

SUBUHI KHAN1, SHAHID AHMAD WANI2 AND MUMTAZ RIYASAT3

Abstract. In this article, the operational definitions and integral representations are com-

bined to introduce new families of the generalized Legendre and generalized Legendre-Appell

polynomials. The explicit summation formulae, determinant definitions and recurrence rela-

tions for the generalized Legendre-Appell polynomials are derived by making use of the integral

transforms and appropriate operational rules. An analogous study of these results for the gen-

eralized Legendre-Bernoulli, Legendre-Euler and Legendre-Genocchi polynomials is presented.

Several identities for these polynomials are also derived by employing appropriate operational

definitions.
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1. Introduction

Differentiation and integration are usually regarded as discrete operations, in the sense that

a function can be differentiated or integrated once, twice, or any number of times. However, in

some circumstances it is useful to evaluate a fractional derivative. Fractional calculus is a branch

of mathematical analysis that studies the possibility of taking real number powers or complex

number powers of the differentiation operator. The combined use of integral transforms and

special polynomials provides a powerful tool to deal with fractional derivatives, see for example

[8].

One of the important classes of polynomial sequences is the class of Appell polynomial se-

quences [2], which arises in numerous problems of applied mathematics, theoretical physics,

approximation theory and several other mathematical branches. The generating function for

the Appell polynomial sequences is given by

A(y, t) := A(t)eyt =

∞∑
n=0

An(y)
tn

n!
. (1)

The power series A(t) is then given by

A(t) =
∞∑
n=0

An
tn

n!
, A0 ̸= 0, (2)
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with Ai (i = 0, 1, 2, · · · ) being real coefficients and the function A(t) is an analytic function at

t = 0. The class of Appell sequences contains a large number of classical polynomial sequences

such as the Bernoulli, Euler, Genocchi, Hermite and Laguerre polynomials etc.

The generating function for the Bernoulli polynomials Bn(y) is given by [9, p. 36](
t

et − 1

)
eyt =

∞∑
n=0

Bn(y)
tn

n!
, |t| < 2π, (3)

where Bk := Bk(0) is the kth Bernoulli number.

The generating function for the Euler polynomials En(y) is given by [9, p. 40](
2

et + 1

)
eyt =

∞∑
n=0

En(y)
tn

n!
, |t| < π, (4)

where Ek := 2kEk

(
1
2

)
is the kth Euler number.

The generating function for the Genocchi polynomials Gn(y) is given by [14](
2t

et + 1

)
eyt =

∞∑
n=0

Gn(y)
tn

n!
, |t| < π, (5)

where Gk := Gk(0) is the kth Genocchi number.

The Appell polynomials and related members are being characterized from different aspects,

for this see [10, 13, 15, 16, 17, 18, 19, 20].

Various generalizations of the special functions of mathematical physics have witnessed a sig-

nificant evolution during the recent years. This further advancement in the theory of special

functions serves as an analytic foundation for the majority of problems in mathematical physics

that have been solved exactly and find broad practical applications. An important development

in the theory of generalized special functions is the introduction of multi-index and multi-variable

special functions.

To give an example, we consider the 2-variable Legendre polynomials Sn(x, y), introduced by

Dattoli and Ricci [7]. These polynomials are of intrinsic mathematical importance and also have

applications in physics. The generating equation for the Legendre polynomials is given by [7]

eyt J0(2t
√
−x) =

∞∑
n=0

Sn(x, y)
tn

n!
, (6)

where J0(xt) is the 0
th order ordinary Bessel function of the first kind [1] defined by the following

series expression:

Jn(2
√
x) =

∞∑
k=0

(−1)k (
√
x)

n+2k

k! (n+ k)!
. (7)

We note that

exp(−αD−1
x ) = J0(2

√
αx), D−n

x {1} :=
xn

n!
, (8)

is the inverse derivative operator.

The polynomials Sn(x, y) are also defined by the following operational rule:

exp

(
D−1

x

∂2

∂y2

)
{yn} = Sn(x, y). (9)
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Next, we recall the 2-variable Legendre-Appell polynomials (LeAP) SAn(x, y), were intro-

duced by Khan and Raza [11]. The generating equation for the Legendre-Appell polynomials

SAn(x, y) is given by

A(t) exp(yt)J0(2t
√
−x) =

∞∑
n=0

SAn(x, y)
tn

n!
, (10)

or, equivalently

A(t) exp(yt) exp(D−1
x t2) =

∞∑
n=0

SAn(x, y)
tn

n!
. (11)

From equation (11), we have

∂2

∂y2
SAn(x, y) = n(n− 1)SAn−2(x, y) and

∂

∂D−1
x

SAn(x, y) = n(n− 1)SAn−2(x, y), (12)

which consequently gives

∂2

∂y2
SAn(x, y) =

∂

∂D−1
x

SAn(x, y). (13)

Also, from generating functions (11) and (1), it follows that

SAn(0, y) = An(y), (14)

solving equation (13) with condition (14) yields the following operational rule for the LeAP

SAn(x, y):

SAn(x, y) = exp

(
D−1

x

∂2

∂y2

)
{An(y)}. (15)

The Euler’s integral forms the basis of new generalizations of special polynomials. Dattoli et

al. in [8] used the Euler integral to find the operational definitions and the generating relations

for the generalized and new forms of special polynomials.

The Euler integral is given by [17, p. 218]

a−ν =
1

Γ(ν)

∞∫
0

e−attν−1dt, min{Re(ν),Re(a)} > 0, (16)

which consequently yields the following [8]:(
α− ∂

∂x

)−ν

f(x) = 1
Γ(ν)

∞∫
0

e−αttν−1 et
∂
∂x f(x)dt = 1

Γ(ν)

∞∫
0

e−αttν−1 f(x+ t)dt. (17)

For the second order derivatives, we have the following formula:(
α− ∂2

∂x2

)−ν

f(x) =
1

Γ(ν)

∞∫
0

e−αttν−1 et
∂2

∂x2 f(x)dt. (18)

In this paper, the generalized forms of the Legendre polynomials and Legendre-Appell poly-

nomials are introduced and studied via fractional operators. The explicit summation formulae,

determinant definitions and recurrence relations are derived for the generalized Legendre-Appell

polynomials. The corresponding results for the generalized Legendre-Bernoulli, Legendre-Euler

and Legendre-Genocchi polynomials are also deduced.
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2. Generalized Legendre-Appell polynomials

To give the operational rule and generating equation for the generalized Legendre polynomials,

we prove the following results:

Theorem 2.1. For the generalized Legendre polynomials νSn(x, y;α), the following operational

rule holds true: (
α−D−1

x

(
∂2

∂y2

))−ν

yn = νSn(x, y;α). (19)

Proof. Replacing a by

(
α−

(
D−1

x
∂2

∂y2

))
in integral (16) and then operating the resultant equa-

tion on yn, we find(
α−D−1

x

(
∂2

∂y2

))−ν

{yn} =
1

Γ(ν)

∞∫
0

e−αttν−1 exp

(
tD−1

x

∂2

∂y2

)
yndt, (20)

which in view of equation (9) becomes(
α−D−1

x

(
∂2

∂y2

))−ν

{yn} =
1

Γ(ν)

∞∫
0

e−αttν−1Sn(xt, y)dt. (21)

The transform on the r.h.s of equation (21) defines a new family of polynomials. Denoting

this special family of polynomials by νSn(x, y;α) and naming it as the generalized Legendre

polynomials, so that we have

νSn(x, y;α) =
1

Γ(ν)

∞∫
0

e−αttν−1Sn(xt, y)dt. (22)

In view of equations (21) and (22), assertion (19) follows. �

Theorem 2.2. For the generalized Legendre polynomials νSn(x, y;α), the following generating

function holds true:

exp(yu)

(α− (D−1
x u2))ν

=

∞∑
n=0

νSn(x, y;α)
un

n!
. (23)

Proof. Multiplying both sides of equation (22) by un

n! and summing over n, we find

∞∑
n=0

νSn(x, y;α)
un

n!
=

∞∑
n=0

1

Γ(ν)

∞∫
0

e−αttν−1Sn(xt, y)
un

n!
dt. (24)

Using equation (6) in the r.h.s. of equation (24), it follows that

∞∑
n=0

νSn(x, y;α)
un

n!
=

exp(yu)

Γ(ν)

∞∫
0

e−
(
α−D−1

x u2
)
ttν−1dt. (25)

Making use of equation (16) in the r.h.s. of the above equation, assertion (23) follows.

�

Next, we derive the operational definition and generating equation for the generalized Legendre-

Appell polynomials by proving the following results:
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Theorem 2.3. For the generalized Legendre-Appell Polynomials νSAn(x, y;α), the following

operational definition holds true:(
α−D−1

x

(
∂2

∂y2

))−ν

{An(y)} = νSAn(x, y;α). (26)

Proof. Replacing a by

(
α−D−1

x

(
∂2

∂y2

))
in integral (16) and operating it on An(y), we find

(
α−D−1

x

(
∂2

∂y2

))−ν

{An(y)} =
1

Γ(ν)

∞∫
0

e−αttν−1 exp

(
tD−1

x

∂2

∂y2

)
An(y)dt, (27)

which in view of equation (15) becomes(
α−D−1

x

(
∂2

∂y2

))−ν

An(y) =
1

Γ(ν)

∞∫
0

e−αttν−1
SAn(xt, y)dt. (28)

The transform on the r.h.s of equation (28) defines a new family of polynomials. Denoting this

special family of polynomials by νSAn(x, y;α) and naming it as the generalized Legend-Appell

polynomials, so that we have

νSAn(x, y;α) =
1

Γ(ν)

∞∫
0

e−αttν−1
SAn(xt, y)dt. (29)

In view of equations (28) and (29), assertion (26) follows. �

Theorem 2.4. For the generalized Legendre-Appell polynomials νSAn(x, y;α), the following

generating function holds true:

A(u) exp(yu)

(α− (D−1
x u2))ν

=

∞∑
n=0

νSAn(x, y;α)
un

n!
. (30)

Proof. Multiplying both sides of equation (29) by un

n! and summing over n, we find

∞∑
n=0

νSAn(x, y;α)
un

n!
=

∞∑
n=0

1

Γ(ν)

∞∫
0

e−αttν−1
SAn(xt, y)

un

n!
dt. (31)

Using generating function (11) in the r.h.s. of equation (31), it follows that

∞∑
n=0

νSAn(x, y;α)
un

n!
=

A(u) exp(yu)

Γ(ν)

∞∫
0

e−
(
α−(D−1

x u2)
)
ttν−1dt, (32)

which on use of integral (16) in the r.h.s. yields assertion (30).

�

Remark 2.1. We remark that, for α = ν = 1 and x → D−1
x , the generalized Legendre polynomi-

als νSn(x, y;α) and generalized Legendre-Appell polynomials νSAn(x, y;α) reduce to Legendre

polynomials Sn(x, y) and Legendre-Appell polynomials SAn(x, y), respectively.

Next, we derive an explicit summation formula for the generalized Laguerre-Appell polyno-

mials νSAn(x, y;α) by proving the following result:
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Theorem 2.5. For the generalized Legendre-Appell polynomials νSAn(x, y, ;α), the following

explicit summation formula in terms of the generalized Legendre polynomials νSn(x, y;α) and

Appell polynomials An(y) holds true:

νSAn(x, y;α) =

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Ar(w) νSn−k−r(x, y;α). (33)

Proof. Consider the product of generating functions (1) and (23) in the following form:

A(t)ewt
(
α− (D−1

x t2)
)−ν

exp(yt) =

∞∑
n=0

∞∑
r=0

Ar(w) νSn(x, y;α)
tn+r

n! r!
. (34)

Replacing n by n − r in the r.h.s. of equation (34) and shifting the first exponential to the

r.h.s., it follows that

A(t)
(
α− (D−1

x t2)
)−ν

exp(yt) =
∞∑
n=0

∞∑
k=0

n∑
r=0

(
n

r

)
(−1)kwkAr(w) νSn−r(x, y;α)

tn

n!
, (35)

which on replacing n by n− k gives

A(t)
(
α− (D−1

x t2)
)−ν

exp(yt) =

∞∑
n=0

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Ar(w) νSn−k−r(x, y;α)

tn

n!
.

(36)

Finally, using generating function (30) in the l.h.s. of equation (36) and then equating the

coefficients of like powers of t in the resultant equation, assertion (34) follows.

�

Remark 2.2. By taking A(u) =
(

u
eu−1

)
and An(u) = Bn(u) in equations (26), (30) and (33),

we find that for the generalized Legendre-Bernoulli polynomials νSBn(x, y;α), the following

operational rule, generating equation and explicit summation formula hold true:(
α−D−1

x

(
∂2

∂y2

))−ν

{Bn(y)} = νSBn(x, y;α), (37)

(
u

eu − 1

)
exp(yu)

(α− (D−1
x u2))ν

=

∞∑
n=0

νSBn(x, y;α)
un

n!
, (38)

νSBn(x, y;α) =
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Br(w) νSn−k−r(x, y;α). (39)

Remark 2.3. Taking A(u) =
(

2
eu+1

)
and An(u) = En(u) in equations (26), (30) and (33), we

find that for the generalized Legendre-Euler polynomials νSEn(x, y;α), the following operational

rule, generating equation and explicit summation formula hold true:(
α−D−1

x

(
∂2

∂y2

))−ν

{En(y)} = νSEn(x, y;α), (40)(
2

eu + 1

)
exp(yu)

(α− (D−1
x u2))ν

=

∞∑
n=0

νSEn(x, y;α)
un

n!
, (41)

νSEn(x, y;α) =

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Er(w) νSn−k−r(x, y;α). (42)
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Remark 2.4. Taking A(u) =
(

2u
eu+1

)
and An(u) = Gn(u) in equations (26), (30) and (33),

we find that for the generalized Legendre-Genocchi polynomials SGn,ν(x, y;α), the following

operational rule, generating equation and explicit summation formula hold true:

(
α−D−1

x

(
∂2

∂y2

))−ν

Gn(y) = νSGn(x, y;α), (43)

(
2u

eu + 1

)
exp(yu)

(α− (D−1
x u2))ν

=

∞∑
n=0

νSGn(x, y;α)
un

n!
, (44)

νSGn(x, y;α) =

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k

r

)
(−1)k wk Gr(w) νSn−k−r(x, y;α). (45)

In the next section, we derive the determinant forms and recurrence relations for the gener-

alized Legendre-Appell polynomials and related members.

3. Determinant forms and recurrence relations

To express the generalized Legendre-Appell polynomials via determinant, we prove the fol-

lowing result:

Theorem 3.1. For the generalized Legendre-Appell polynomials νSAn(x, y;α), the following
determinant form holds true:

νSA0(x, y;α) =
1
β 0

, (46)

νSAn(x, y;α) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 νS1(x, y;α) νS2(x, y;α) · · · νSn−1(x, y;α) νSn(x, y;α)

β0 β1 β2 · · · βn−1 βn

0 β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . . · · · . .

. . . · · · . .

0 0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (47)

where n = 1, 2, · · · ; β0, β1, · · · , βn ∈ R; β0 ̸= 0 and

βn = − 1
A0

( n∑
k=1

(
n
k

)
Ak βn−k

)
, n = 1, 2, · · · . (48)
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Proof. We consider the following determinant definition for the Appell polynomials [5, p.1533]:

A0(y) =
1

β 0

, (49)

An(y) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y y2 · · · yn−1 yn

β0 β1 β2 · · · βn−1 βn

0 β0
(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . . · · · . .

. . . · · · . .

0 0 0 · · · β0
(

n
n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (50)

Taking n = 0 in formula (33) and then using equations (49) and (50), we get assertion (46).

Further, expanding determinant (50) with respect to the first row and then operating(
α−

(
D−1

x
∂2

∂y2

))−ν
on both sides of the resulting equation and then using equations (19) and

(26), we find

νSAn(x, y;α) =
(−1)nνS0(x, y;α)

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · βn−1 βn

β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . · · · . .

. . · · · . .

0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (−1)nνS1(x, y;α)

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β2 · · · βn−1 βn

0
(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 β0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . · · · . .

. . · · · . .

0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+
(−1)nνS2(x, y;α)

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 · · · βn−1 βn

0 β0 · · ·
(
n−1
1

)
βn−2

(
n
1

)
βn−1

0 0 · · ·
(
n−1
2

)
βn−3

(
n
2

)
βn−2

. . · · · . .

. . · · · . .

0 0 · · · β0

(
n

n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+· · ·

+
(−1)2n−1

νSn−1(x, y;α)

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn

0 β0

(
2
1

)
β1 · · ·

(
n
1

)
βn−1

0 0 β0 · · ·
(
n
2

)
βn−2

. . . · · · .

. . . · · · .

0 0 0 · · ·
(

n
n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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+
νSn(x, y;α)

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 · · · βn−1

0 β0

(
2
1

)
β1 · · ·

(
n−1
1

)
βn−2

0 0 β0 · · ·
(
n−1
2

)
βn−3

. . . · · · .

. . . · · · .

0 0 0 · · ·
(

n
n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (51)

Combining the terms in the r.h.s. of equation (51), we are lead to assertion (47).

• Taking β0 = 1 and βi =
1

i+1 (i = 1, 2, ....., n) (for which the determinant form of the Appell polyno-

mials An(y) reduce to the Bernoulli polynomials Bn(y) [4, 5]) in equations (46) and (47), the determinant

definition of the generalized Legendre-Bernoulli polynomials νSBn(x, y;α) can be obtained.

• Taking β0 = 1 and βi =
1
2 (i = 1, 2, ....., n) (for which the determinant form of the Appell polynomials

An(y) reduce to the Euler polynomials En(y) [5] in equations (46) and (47), the determinant definition

of the generalized Legendre-Euler polynomials νSEn(x, y;α) can be obtained.

• Taking β0 = 1 and βi =
1

2(i+1) (i = 1, 2, ....., n) (for which the determinant form of the Appell poly-

nomials An(y) reduce to the Genocchi polynomials Gn(y) in equations (46) and (47), the determinant

definition of the generalized Legendre-Genocchi polynomials νSGn(x, y;α) can be obtained.

Next, we derive the recurrence relations for the generalized Legendre-Appell polynomials SAn,ν(x, y;α)

by taking into consideration their generating equation.

On differentiating generating function (30), with respect to y, D−1
x and α, we find the following

recurrence relations for the generalized Legendre-Appell polynomials νSAn(x, y;α):

∂

∂y

(
νSAn(x, y;α)

)
= n νSAn(x, y;α),

∂

∂D−1
x

(
νSAn(x, y;α)

)
= νn(n− 1) ν+1SAn(x, y;α),

∂

∂α

(
νSAn(x, y;α)

)
= −ν

ν+1SAn(x, y;α), (52)

which consequently yields

∂

∂D−1
x

(
νSAn(x, y;α)

)
= − ∂3

∂y2∂α νSAn(x, y;α). (53)

In the next section certain identities for the Legendre-Appell polynomial family and some of its mem-

bers are obtained as applications of the results derived in Section 2.

4. Applications

Several identities involving Appell polynomials and related members are known in literature. The op-

erational formalism developed in the previous section can be used to obtain the corresponding identities

involving generalized Legendre-Appell and related polynomials. To achieve this, we perform the following

operation:
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(O) operating
(
α−D−1

x
∂2

∂y2

)−ν

on both sides of a given relation.

First, we consider the following results for the Appell polynomials An(y) [5, (31-32) p.1534]:

An(y) =
1

β0

(
yn −

n−1∑
k=0

(
n

k

)
βn−k Ak(y)

)
, n = 1, 2, · · · , (54)

yn =

n∑
k=0

(
n

k

)
βn−k Ak(y), n = 0, 1, · · · . (55)

Performing operation (O) on both sides of the above equations and then using operational defini-

tions (19) and (26), we obtain the following identities involving generalized Legendre-Appell polynomials

νSAn(x, y;α):

νSAn(x, y;α) =
1

β0

(
νSn(x, y;α)−

n−1∑
k=0

(
n

k

)
βn−k νSAk(x, y;α)

)
, n = 1, 2, · · · , (56)

νSn(x, y;α) =
n∑

k=0

(
n

k

)
βn−k νSAk(x, y;α), n = 0, 1, · · · . (57)

Next, we recall the following functional equations involving Bernoulli polynomials Bn(y) [12, p.26]:

Bn(y + 1)−Bn(y) = n yn−1, n = 0, 1, 2..... , (58)

n−1∑
m=0

(
n

m

)
Bm(y) = nyn−1, n = 2, 3, 4..... , (59)

Bn(my) = mn−1
m−1∑
k=0

Bn

(
y +

k

m

)
, n = 0, 1.2, .....; m = 1, 2, 3.... . (60)

Again, performing operation (O) on both sides of the above equations and then using operational

definitions (19) and (37), the following identities involving generalized Legendre-Bernoulli polynomials

SBn,ν(x, y;α) are obtained:

νSBn(x, y + 1;α)− νSBn(x, y;α) = n νSn−1(x, y;α), n = 0, 1, 2 · · · , (61)

n−1∑
m=0

(
n

m

)
νSBm(x, y;α) = n νSn−1(x, y;α), n = 2, 3, 4 · · · , (62)

νSBn(mx,my;α) = mn−1
m−1∑
k=0

νSBn

(
x, y +

k

m
;α

)
, n = 0, 1, 2, ...; m = 1, 2, 3 · · · . (63)

Further, performing operation (O) with use of operational rules (19), (40)and (43) on the following

functional equations involving Euler polynomials En(y) [12, p. 30] and Genocchi polynomials Gn(y) [6,

p. 1038, (42)]:

En(y + 1) + En(y) = 2yn,

En(my) = mn
m−1∑
k=0

(−1)kEn

(
y +

k

m

)
n = 0, 1, 2...; m odd,

Gn+1(y) +Gn(y) = 2nyn−1,

yields the following identities involving the generalized Legendre-Euler polynomials SEn,ν(x, y;α) and

generalized Legendre-Genocchi polynomials SGn,ν(x, y;α):

νSEn(x, y + 1;α) + νSEn(x, y;α) = 2 νSn(x, y;α), (64)

νSEn(mx,my;α) = mn
m−1∑
k=0

(−1)kνSEn

(
x, y +

k

m
;α

)
, n = 0, 1.2, ...; m odd, (65)

νSGn+1(x, y;α) + νSGn(x, y;α) = 2n νSn−1(x, y;α). (66)
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Finally, considering the following connection formulae involving the Bernoulli and Euler polynomials

[12, pp. 29-30]:

Bn(y) = 2−n
n∑

m=0

(
n

m

)
Bn−mEm(2y), n = 0, 1, 2... , (67)

En(y) =
2n+1

n+ 1

[
Bn+1

(y + 1

2

)
−Bn+1

(y
2

)]
, n = 0, 1, 2... , (68)

En(my) = − 2m
n

n+ 1

m−1∑
k=0

(−1)kBn+1

(y + k

m

)
, n = 0, 1, 2...,m even, (69)

which on performing operation (O) and then using appropriate operational definitions yields the following

connection formulae involving the generalized Legendre-Bernoulli and Legendre-Euler polynomials:

νSBn(x, y;α) = 2−n
n∑

m=0

(
n

m

)
Bn−m νSEn(2x, 2y;α), n = 0, 1, 2... , (70)

νSEn(x, y;α) =
2n+1

n+ 1

[
νSEn+1

(x
2
,
y + 1

2
;α
)
− νSEn+1

(x
2
,
y

2
;α
)]

, n = 0, 1, 2... , (71)

νSEn(mx,my;α) = − 2mn

n+ 1

m−1∑
k=0

(−1)kνSBn+1

(
x

m
,
y + k

m
;α

)
, n = 0, 1, 2, ...; m even. (72)

Recently, certain new families of three variables associated with Legendre polynomials are introduced.

This approach can be further extended to give several important results for these polynomials involving

exponential and fractional operators.
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[19] Srivastava, H.M., Özarslan, M.A., Kaanoǧlu, C., (2013), Some generalized Lagrange-based Apostol-Bernoulli,

Apostol-Euler and Apostol-Genocchi polynomials, Russian J. Math. Phys., 20, pp.110-120.

[20] Srivastava, H.M., Vignat, C., (2012), Probabilistic proofs of some relationships between the Bernoulli and

Euler polynomials, European J. Pure Appl. Math., 5, pp.97-107.

Subuhi Khan is working as a Professor in the

Department of Mathematics, AMU, Aligarh. Her

research interest includes special functions, appli-

cable analysis, fractional calculus, q-theory and

approximation theory.

Shahid Ahmad Wani has completed his Ph.D.

from Aligarh Muslim University, Aligarh in the

field of special functions. He is currently working

as an Assistant Professor in the Department of

Computer Science and Engineering, University of

Kashmir. His research interest includes fractional

calculus, differential equations and approximation

theory.



156 TWMS J. PURE APPL. MATH., V.11, N.2, 2020

Mumtaz Riyasat has completed her Ph.D.

from Aligarh Muslim University, Aligarh in the

field of special functions and q-calculus. She is

currently working as an Assistant Professor in the

Department of Applied Mathematics, Faculty of

Engineering and Technology, AMU, Aligarh.


